首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85503篇
  免费   1123篇
  国内免费   413篇
电工技术   797篇
综合类   2318篇
化学工业   11876篇
金属工艺   4785篇
机械仪表   3086篇
建筑科学   2221篇
矿业工程   566篇
能源动力   1210篇
轻工业   3809篇
水利工程   1280篇
石油天然气   350篇
无线电   9394篇
一般工业技术   16612篇
冶金工业   2696篇
原子能技术   268篇
自动化技术   25771篇
  2023年   30篇
  2022年   31篇
  2021年   78篇
  2020年   91篇
  2019年   85篇
  2018年   14506篇
  2017年   13434篇
  2016年   10029篇
  2015年   675篇
  2014年   338篇
  2013年   362篇
  2012年   3300篇
  2011年   9549篇
  2010年   8396篇
  2009年   5637篇
  2008年   6867篇
  2007年   7852篇
  2006年   191篇
  2005年   1250篇
  2004年   1188篇
  2003年   1222篇
  2002年   573篇
  2001年   121篇
  2000年   193篇
  1999年   65篇
  1998年   68篇
  1997年   52篇
  1996年   54篇
  1995年   21篇
  1994年   24篇
  1993年   20篇
  1992年   21篇
  1991年   23篇
  1988年   12篇
  1985年   12篇
  1969年   24篇
  1968年   43篇
  1967年   35篇
  1966年   42篇
  1965年   44篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Mono and disubstituted 2,3-dihydroquinazolin-4(1H)-ones were obtained in good yields via a one-pot, three component reaction of isatoic anhydride and aromatic aldehydes with ammonium acetate or primary amines in the presence of perchlorated zirconia (HClO4/ZrO2) nano particles as an efficient solid acid catalyst under solvent-free conditions. Simple workup and reusability of the catalyst are advantages of this method.  相似文献   
82.
Graphite carbon nitride (g-C3N4) is well known as one of the most promising materials for photocatalytic activities, such as CO2 reduction and water splitting, and environmental remediation through the removal of organic pollutants. On the other hand, carbon nitride also pose outstanding properties and extensive application forecasts in the aspect of field emission properties. In this mini review, the novel structure, synthesis and preparation techniques of full-bodied g-C3N4-based composite and films were revealed. This mini review discussed contemporary advancement in the structure, synthesis, and diverse methods used for preparing g-C3N4 nanostructured materials. The present study gives an account of full knowledge of the use of the exceptional structural and properties, and the preparation techniques of graphite carbon nitride (g-C3N4) and its applications.  相似文献   
83.
The demand for general reduction of the energy consumption in civil engineering leads to more frequent use of insulating materials with air gaps or cavities. Heat transfer through a constructional part can be decreased by adding an air gap and low emissivity reflective foils to the structure. In the first part of this paper, the impacts of cavity thickness and inner surface emissivity on combined conduction, convection and radiation heat transfer was experimentally explored in the case of constructional part with a horizontal cavity subjected to constant downward heat flux. The heat flow meter Netzsch HFM 436 Lambda was used for steady-state measurements. Results suggest that the studied parameters seriously affect the combined heat transfer in the composed structure. In the second part the paper reports the numerical study of two-dimensional conjugate heat transfer in closed horizontal cavity having air as the intervening medium. Numerical models validated by related experimental results were performed to further investigate the effect of radiation heat transfer. It was found that in general, the total heat flux through the composed structure decreases with increasing air cavity thickness, which is significant especially when low emissivity inner surfaces are taking into account. The direction of heat flow (downward or upward heat flow) has a significant impact on the convection heat transfer. An important contribution from the present work is the analysis of the optimal thickness of the cavity at different boundary conditions. The optimal thickness of the enclosure with low emissivity surfaces is 16 mm when subjected to upward heat flux.  相似文献   
84.
An optimization design method is presented to reduce the undesirable vibrations caused by clearance for planar linkage mechanism. A clearance joint is defined and considered a contact/impact force constraint. Contact and impact force models for the clearance joint are established using a normal contact force model based on Hertz model with energy loss and a tangential friction model based on modified Coulomb model with dynamic friction coefficient, respectively. In view of the clearance joint, dynamic equations and optimization method for a planar four-bar mechanism are then presented as an application example. The optimization aims to minimize the maximum absolute acceleration peaks of the mechanism by determining the link lengths of the planar linkage mechanism. Finally, the optimization design is solved by a generalized reduced gradient algorithm. Results show evident decrease in vibration peaks of the mechanism and obvious reduction in the contact forces in the clearance joint, which contribute to a good performance of planar linkage mechanism systems.  相似文献   
85.
86.
Polymer Bulletin - Preparation of associating multiblock copolymer electrolytes mediated by radical addition–fragmentation chain transfer (RAFT) technique has been evaluated and reported in...  相似文献   
87.
88.
This paper presents a mixed integer programming formulation dealing with the effective minimisation of risk incurred when optimizing mining production rates in such a way that production targets are met in the presence of geological uncertainty. This is developed through the concept of a “stable solution domain” that provides all feasible combinations of ore and waste extraction for the ultimate pit limit of a given deposit, independent of the geological risk. The proposed formulation provides an optimal annual extraction rate, together with the optimal utilization of a mining fleet and an equipment acquisition program. This solution eliminates unnecessary capital expenses and is feasible under all geological scenarios. The mathematical programming model is detailed and tested at a gold deposit. The results are used as input to a production schedule design and are compared to the schedule generated using a constant mining rate; the comparison shows that about 40% of equipment acquisition can be delayed for 7 years and mill demand still be met, thus maximizing profit and minimizing costs.  相似文献   
89.
A new micro molecular tagging velocimetry (μMTV) setup has been developed to analyze velocity fields in confined internal gas flows. MTV is a little-intrusive velocimetry technique. It relies on the properties of molecular tracers which can experience relatively long lifetime luminescence once excited by a laser beam with an appropriate wavelength. The technique has been validated for acetone seeded flows of argon inside a 1 mm depth rectangular minichannel, with a multilayer design offering two optical accesses. Velocity profiles have been obtained using a specific data reduction process, with a resolution in the order of 15 μm. The experimental data are compared to theoretical velocity profiles of compressible pressure-driven flows. A good agreement is observed, except close to the walls, where the accuracy would still need to be improved. Following these first results obtained at atmospheric pressure, the influence of pressure on the luminescence intensity of acetone molecules is analyzed. The obtained data lead to a discussion of MTV applicability to rarefied flows and its possible use for a direct measurement of velocity slip at the channel walls.  相似文献   
90.
Development of spectroscopic prediction models via partial least squares regression (PLSR) suggests that model performance is highly affected by means of calibration and nature of the dataset. This study compares the predictive performance of PLSR models obtained by cross-validation and independent validation to quantify physico-chemical soil properties from their mid-infrared diffuse reflectance Fourier transform spectra (midDRIFTS) across two contrasting regions, Kraichgau (K) and Swabian Alb (SA), in Southwest Germany. We evaluated the capability of midDRIFTS-PLSR models for predicting total carbon (TC), organic carbon (TOC), inorganic carbon (TIC), nitrogen (TN), mineral N (Nmin), C:N ratio, hot water extractable C and N (CHWE, NHWE), microbial biomass C and N (Cmic, Nmic), pH, bulk density, and clay, silt and sand contents of 126 soil samples. Based on calibrated models, most soil properties were predicted successfully using either calibration approach with residual prediction deviations ≥3 and R2 > 0.9, except for Nmin, C/N ratio, pH, bulk density and sand. However, predictive performance of generic independent validation derived models (GIC) of test set was considerably higher than generic cross-validation models. Validation using GIC models gave relatively the same predictive performance with those obtained in calibration except for Nmin. Validation of region specific cross-validated models, however, resulted in successful predictions only for TC, TIC, TOC and TN in SA and TC and TIC and TOC in K. Our results show the superiority of independent validation over both generic and region specific cross-validation as a robust tool for predicting soil properties without further laboratory measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号